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Abstract

StyleGAN allows for fine-grained control of image generation through its hierarchy
of latent and noise inserts. Using musical information like onset envelopes and
chromagrams, latent vectors and noise maps can be generated to create interpo-
lation videos that react to music. This paper introduces techniques that create
convincing audio-reactive videos by combining multiple interpolations that react to
individual musical features. The amount of musical information that can be visually
recognized is maximized by mapping different musical features to different parts
of the latent and noise hierarchy.

1 Introduction

There have been many music videos that use machine learning techniques [3, 11, 12, 17, 22, 23].
However, most either stylize pre-edited clips, suffer from size limitations, or do not visually react to
the music. Lee et al. [14] propose a framework that learns to synthesize videos of people dancing
from music. However, the architecture relies on domain-specific features and so is limited to dance
videos only. Previous audio-reactive videos that use StyleGAN [7, 13, 15, 19, 20] are either focused
on syncing the lips with the text, are not able to capture the wide range of elements in the music, or
do not make full use of the expressiveness of StyleGAN’s architecture.

In this paper, multiple audio-reactive techniques are introduced that better capture the most important
aspects of music. We also show how these techniques can be combined while preserving their
individual clarity. This increases the amount of musical information that can be encoded visually by
leveraging the full expressive capacity of StyleGAN.

The StyleGAN(2) [8, 9] generator uses a hierarchy of convolutional blocks each responsible for
different scales of visual information (this is discussed further in Appendix A). Each block is
controlled by a latent vector which encodes the semantic structure of that scale and a noise matrix
which encodes the stochastic layout of the scale. This multi-scale control of image generation offered
by StyleGAN is important for generating convincing audio-reactive interpolations.

Creating a video that reacts well to the music is a process that is unique to each audio source. The
artist’s task is to find which features in the music can best be mapped to StyleGAN’s inputs. Spreading
the modulation over different scales prevents the interpolation from becoming too chaotic. Good
audio-reactive videos are characterized by how well separate visual movements can be recognized as
corresponding to elements of the music. Therefore, having changes in the video which are clearly
distinct from each other allows more "bandwidth" to represent the music.

2 Extracting Musical Feature Envelopes

Audio-reactive interpolations should correspond to the music both on a short-term scale and long-term
scale. Harmonic and rhythmic features can be used to generate recognizable visual changes on short
timescales. Mixing together multiple interpolations designed to match each section of the song
ensures the global visual narrative fits the musical one, as well.
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Short-Term Features The two most important musical features for local reactivity are the chroma-
gram and onset envelope. A chromagram divides the frequency spectrum into categories by pitch
(e.g. the 12 notes of the western musical scale). This gives separate envelopes which are high when
the given frequencies are being played and low when they are not. The onset envelope peaks when
there is a sudden change in the audio spectrum (e.g. when a drum is hit). This captures the rhythmic
character of the music.

Often it is desirable to calculate these features for individual instruments, but sometimes it is not
possible to find a band of frequencies where the instrument is isolated. One way to alleviate this is
by applying harmonic-percussive source separation algorithms [5] and then filtering the separated
signals. More recently, neural network based approaches also allow more targeted source separation
[4, 6, 21].

Long-Term Features On top of these short-timescale features, the longer-term structure of the
music can be incorporated. The RMS represents the average energy across the entire spectrum.
Louder sections with more instruments will have a higher RMS value while softer sections will be
low. Alternatively, algorithms like Laplacian segmentation [16] can be used to analyze the hierarchical
pattern structure of music to automatically detect different sections.

3 Generating Audio-reactive Interpolations

An expressive audio-reactive interpolation is created by combining multiple sequences of latent
vectors or noise maps that react to individual aspects of the music. Video examples showing results
can be found at https://jcbrouwer.github.io/audio-reactive-stylegan-supplement.

Latents Two types of interpolations can be used as building blocks: looping patterns synchronized
to a set amount of bars of music and chromagram-weighted sums of a set of latent vectors (discussed
further in Appendices B and C, respectively). Using looping patterns tends to work well due to
the repetitive nature of music. The chromagram-weighted sum creates a sequence where each note
has a unique visual style which blend together based on the notes being played. Using either loops
or a chromagram sequence as a base, other interpolations can be added by multiplying the new
interpolation by the onset of an instrument and the base interpolation by its inverse. This causes a
visual shift towards the instrument’s latents whenever it plays. Often a single, static latent is sufficient
to mix in by onset, especially for transient envelopes like drums.

Noise For noise maps, the exact values have less effect on the resulting image. Rather the standard
deviation, spatial location, and smoothness over time are visually apparent. Multiplying a noise
sequence with drum onsets will increase its standard deviation whenever the drums hit causing a
short, chaotic spasm.

Mixing The key to ensuring that different reactive components are recognizable is to map them to
different parts of the noise and latent hierarchies. Both hierarchies can be split into about 3 levels:
large structure, medium structure/color, and fine detail. On top of this, noise maps have a spatial
component and so different parts of the image can be used by different reactive components (e.g.
center vs. edges). Sequences designed for each section of a song (e.g. different noise intensities,
different latents, faster loops, etc.) can be blended based on long-term features, like RMS, to ensure
the video follows the narrative of the music.

Network Bending Another way of influencing image generation is by applying transformations
to intermediate outputs before passing them to the next layer. This is called network bending [2].
Simple spatial transformations like zooming or rotating applied to lower layers propagate to the
output image with a fluid, morphing quality due to the upper layers filling details into the transformed
features. Classification networks can be trained to recognize which internal outputs are related to
semantic features and transform those individually (e.g. scaling the eyebrows or translating the ears).
A related technique called model rewriting [1] works similarly but applies changes to the weights of
the generator instead. These techniques both open a wide range of specific targets for audio feature
modulation which are clearly distinguishable from latent or noise effects–increasing the musical
information that can be conveyed in a given period of time.
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Broader Impact

The techniques described in this paper open new creative pathways towards expressive audio-reactive
content. Hopefully this will enable artists in the future to design better accompaniments to their
music and convey the messages behind their work more easily.

Generative networks like StyleGAN provide expressive control over high-level structural and textural
aspects of images. Where previously artists would have to program a rich generative/procedural
system manually, now GANs can be trained to learn representations of arbitrary image data. While
the computational requirements to train such GANs are still high, further innovations will continue
to lower the barrier to entry. This will allow people without extensive knowledge of visual design
programs or music information retrieval to create audio-reactive videos easily.

This might automate away the jobs of today’s audio-reactive designers, but it would do so by opening
the door for others to create such content more easily. The techniques described in this paper still
need to be selected and fine-tuned for different songs or genres for the best results. This means that,
for the time being at least, a human in the loop can still provide value over automatic systems.

One interesting consideration that arises from the use of generative networks is the question of how
derivative the audio-reactive videos are. A network could, for example, be trained on copyrighted
works, causing its outputs to strongly resemble the originals. On the one hand, this could be used
for creative remixing of a music video to accompany a remix of the original song, on the other, it
might enable profiting off of the visual style of an artist who does not provide consent or receive
compensation.

As always there are secondary effects that have the potential to have a negative impact. However,
hopefully people will instead focus their effort on using these techniques to create inspiring new
works of audio-reactive art.
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A StyleGAN Architecture

The StyleGAN(2) [8, 9] generator uses blocks of progressively larger style-modulated convolutions
with a noise insert at each scale. With an output resolution of 1024x1024 there are 9 distinct scales at
which latent vectors and noise matrices are inserted to the network. The lower blocks, which have
smaller spatial size, model large-scale structural information while the higher, larger blocks model
the details. The latent vector controls high-level structural or textural information (e.g. face shape
or hair color in a network trained on FFHQ) while the noise controls the stochastic variation in this
information (e.g. the exact pattern of hair or skin pores).

StyleGAN Block

1024x1024
(Final Image)

Latent Vector

Noise Matrix

Figure 1: Schematic representation of the structure of the StyleGAN generator. Dark blue boxes represent
targets that audio features can control.

Figure 1 shows the structure of the StyleGAN generator. While there are differences between the
architectures of StyleGAN1 and StyleGAN2, they do not affect the control points that can be targeted
and so the details are left out of the schematic. The green boxes show the values that propagate
through the network step by step. The dark blue boxes show the targets that musical features can be
mapped to.

While there are 9 sets of 4 of these features in a network of resolution 1024x1024, generally the
effects of consecutive blocks will not be distinguishable from each other when being modulated at
the same time–especially in the highest blocks. This can vary per trained network, though, so groups
of blocks that are visually separable should be evaluated on a case-by-case basis.

B Looping Latent Sequences

There are multiple ways to generate latent sequences that loop in a visually pleasing way: using
spline interpolation, Gaussian filters, or geodesics on the unit n-sphere.

The spline approach is the most straightforward and works well when done in StyleGAN’s mapped
latent space, W. For a collection of latents, calculate the 1-dimensional spline through each of their
coordinates returning to the first latent at the end[18].
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The second trick comes from the official implementation of Progressive Growing of GANs [10]. Here
a 1-dimensional Gaussian filter is applied along the time dimension of a set of latents. This weighted
moving average creates a smooth interpolation. This is useful to make any latent or modulation signal
smoother. Note that with higher standard deviations of the Gaussian filter (which give smoother
results), the latents are drawn closer to the average latent. Normalizing by the standard deviation of
the latents after filtering retains output variety, however, this can cause the final path through latent
space to miss the exact latent vectors that were originally filtered.

The unit sphere geodesics approach is less applicable in StyleGAN’s W-space as this is a semantically
decoupled latent space. However, in the z-space, interpolating along these geodesics tends to give
higher quality images than linear or spline interpolation. A discussion of this can be found in a
GitHub issue in the DCGAN repository [24].

However the loops are generated, setting their length so that they repeat in time to patterns in the
music helps create the feeling that the video matches the audio. While this trick relies on the human
tendency to seek connections even when there are none, mixing a few other audio-reactive sequences
into a base sequence that is simply looping creates convincing audiovisual interpolations.

C Chromagram-weighted Latent Sequences

A chromagram-weighted latent sequence can be created by taking the dot product of a normalized
chromagram and a tensor of latent vectors. When the chromagram is normalized to sum to one at
each time step, the result is an average of the latent vectors weighted by the spectral energy in the
frequencies of each note.

Time
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Figure 2: A 6-bin chromagram’s magnitudes are plotted in the center. The images corresponding to the latent
vectors of each bin are along the right side. The chromagram-weighted sequence is along the top–the sum of
each chromagram bin times its latent vector. The dotted lines show the point in time that each frame occurs.

Figure 2 shows the magnitude of each bin of an example 6-bin chromagram over time. On the right
are the images which each latent vector produces and along the top are is the chromagram-weighted
sequence. When the magnitude of the bin is high, its corresponding latent vector is blended into the
image more strongly. Due to StyleGAN’s learned, semantically decoupled latent space, averaging
latent vectors produces images that have traits of each of the latent vectors that are mixed in.
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Humans can easily hear when different chords or notes are played and so using latent sequences
that change according to these tones is a way to ensure that the video’s movements can clearly be
recognized as stemming from the music.

D Post-processing Envelopes

Often signals such as onset or chromagrams calculated from audio will be noisy and unstable. This
can cause unpleasant visual jitter or lead to visual changes which are less/more emphatic than their
audio counterparts. While using better source separation or filtering the audio can help, there are a
couple of ways to post-process these envelopes that can make a big difference as well.

The best audio-reactive results come from carefully tweaking combinations of these post-processing
effects on each musical feature’s envelope.

Filtering A moving average or Gaussian filter (as discussed in Appendix B) helps eliminate jitter
from envelopes. This reduces the dynamic range of the envelope so should usually be followed with
a normalization step to compensate. For transient envelopes, the second half of the filter kernel can
be reduced (or set to zero) to make the filter more causal (although the kernel must be normalized
to sum to one again). This smooths the signal without looking forward in time. This helps prevent
visual transients from starting to ramp up before the corresponding audio transient has occurred.

Compression and Expansion Another important set of effects are expansion, compression, and
clipping. These effects work differently on the signal based on its value. For an example of expansion,
a threshold can be set at 0.5, above which the signal is multiplied by 2 and below which the signal is
divided by 2 (again, usually this is followed by normalizing the signal back to between 0 and 1). This
creates a more extreme envelope which is only high when the musical feature is strongly present.

Flipping the multiplication and division to the opposite sides of the threshold has the opposite effect:
compressing the envelope’s dynamic range. This is useful when the visual reaction is not strong
enough compared to the audio.

Another version of compression is to simply multiply the entire signal and then clip any values above
a threshold to that maximum. This creates flattened peaks which can be especially useful for long
term envelopes (e.g. for mixing in latent sequences for different sections).
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